发布信息

为自动葡萄酒分析提供人工味觉和嗅觉智能

作者:本站编辑      2023-12-20 22:43:03     10

Taste and olfactory are the important biological sensory organs, which play a vital role in our life. In many areas, human experts have been trained with high-level taste and olfactory perceptron for wine and tea tasting, who can help improve the quality of wine and tea. In recent years, electronic tongue (E-Tongue), as a kind of promising bionic system for five basic biological tastes including sourness, saltiness, bitterness, sweetness and umami, is playing an increasingly important role in automatic wine, tea, food and pharmaceutical assessment, etc. (Tahara and Toko, 2013). The first type of voltammetric E-Tongue proposed by Winquist et al. 1997 employed an array of noble metal working electrodes with small amplitude pulse voltammetry (SAPV) or large amplitude pulse voltammetry (LAPV). Tian et al. 2007 developed a voltammetric E-Tongue system by combining working electrodes with multifrequency large amplitude pulse. A general E-Tongue is actually a multi-sensor system, comprising of an array of nonspecific, low selective and high cross-sensitive sensors, and a multivariate data analysis module.

味觉和嗅觉是重要的生物感觉器官,在我们的生活中起着至关重要的作用。在许多领域,人类专家已经接受了高水平的品酒嗅觉感知器的训练,可以帮助提高酒和茶的品质。近年来,电子舌(E-Tongue)作为一种具有酸、咸、苦、甜、鲜五种基本生物味觉的仿生系统,在酒、茶、食品、药品等自动评价中发挥着越来越重要的作用(Tahara and Toko, 2013)。温奎斯特等人(Winquist etal . 1997)提出的第一种伏安e舌采用一组贵金属工作电极,采用小幅度脉冲伏安法(SAPV)或大幅度脉冲伏安法(LAPV)。Tian等人2007年开发了一种将工作电极与多频大幅度脉冲相结合的伏安电子舌系统。一般的电子舌实际上是一个多传感器系统,由一系列非特异性、低选择性和高交叉敏感的传感器和一个多变量数据分析模块组成

Figure 1. The basic structure of E-Tongue.

Electronic olfactory system constructed with a model nose was proposed for the first time to mimic the biological olfactory mechanism as early as in 1982 (Persaud and Dodd, 1982), which presented two key assumptions of mammalian olfactory system: (1) there is no requirement for odour-specific transducers; (2) odor signals from the transducers can be learnt. One key characteristic of model nose is that the odorant detectors (i.e. the primary neurons) respond to a wide range of chemicals. In 1994, Gardner et al. (Gardner and Bartlett, 1994) showed a new definition for artificial olfactory system: “An electronic nose (E-Nose) is an instrument, which comprises an array of chemical sensors with partial specificity and an appropriate pattern recognition system, capable of recognizing simple or complex odours”. The bionic techniques of E-Tongue and E-Nose have been widely used in wine analysis and achieved acceptable precision (Cetó et al. 2016; Varnamkhasti et al. 2011).

早在1982年(Persaud and Dodd, 1982)就首次提出用模型鼻子构建电子嗅觉系统来模拟生物嗅觉机制,提出了哺乳动物嗅觉系统的两个关键假设:(1)不需要气味特异性传感器;(2)传感器的气味信号可以被学习。模型鼻子的一个关键特征是气味探测器(即初级神经元)对各种化学物质作出反应。1994年,Gardner et al. (Gardner and Bartlett, 1994)对人工嗅觉系统提出了新的定义:“电子鼻是一种仪器,它由一系列具有部分特异性的化学传感器和适当的模式识别系统组成,能够识别简单或复杂的气味”。电子舌和电子鼻的仿生技术已广泛应用于葡萄酒分析,并取得了可接受的精度(Cetó et al. 2016;Varnamkhasti et al. 2011)。

Figure 2. The basic structure of E-Nose.

In our group, a long-term research on E-Nose and E-Tongue technique for developing intelligent systems toward automatic analysis and recognition of odor and liquid by using machine learning and pattern recognition models has been employed (Zhang et al. 2017; Zhang and Zhang, 2017; Zhang et al. 2018). A detailed description of the developed E-Tongue for automatic tea, wine and drink analysis is presented (Zhang et al. 2018).

在我们的小组中,长期研究了电子鼻和电子舌技术,通过使用机器学习和模式识别模型开发智能系统,自动分析和识别气味和液体(Zhang等人,2017;Zhang and Zhang, 2017;Zhang et al. 2018)。对开发的用于茶、酒和饮料自动分析的电子舌进行了详细描述(Zhang et al. 2018)。

(1) System development. The E-Tongue system developed in our lab is based on the MLAPV (multi-frequency large amplitude pulse voltammetry) principle. The experimental platform includes E-Tongue system, personal computer (PC), and electrochemical cell. The pulse signal excitation and acquisition modules are controlled by a microcontroller unit. The response (perception) signal (output) is then transmitted to the computer by a blue-tooth module. The sensing module includes five working electrodes, such as gold, platinum, palladium, tungsten and silver, one auxiliary electrode (pillar platinum) and one reference electrode (Ag/AgCl). MLAPV is adopted as the measuring technique. The pulse signal (excitation) comprises of three individual frequencies: 1 Hz, 3 Hz and 5 Hz, and five amplitudes of voltage: 4.10V, 3.85V, 3.60V, 3.35 and 3.10V for each frequency.

(1)系统开发。本实验室开发的电子舌系统是基于MLAPV(多频大振幅脉冲伏安法)原理。实验平台包括电子舌系统、个人计算机(PC)和电化学电池。脉冲信号激励和采集模块由单片机控制。然后,响应(感知)信号(输出)通过蓝牙模块传输到计算机。传感模块包括金、铂、钯、钨、银等五个工作电极,一个辅助电极(柱铂)和一个参比电极(Ag/AgCl)。采用MLAPV作为测量技术。脉冲信号(激励)包括三个单独的频率:1hz, 3hz和5hz,以及五个电压幅值:每个频率4.10V, 3.85V, 3.60V, 3.35和3.10V。

Figure 3. The developed E-Tongue system (left) and the sensing output signal (right).

图3    开发的电子舌系统(左)和传感输出信号(右)。

(2) Dataset development. The data measurement process includes sample preparation, signal perception, signal acquisition and electrodes cleaning. All the measurements were performed at room temperature (25 ± 1 Celsius) and the electrochemical cell was exposed to ambient air without any treatment. Each liquid sample is measured by the E-Tongue system with 5 electrode sensors. For each sensor, 2050 points are observed, and results in a 5 × 2050 data matrix for each observation. For further denoising, a sliding window based smooth filter is considered. The signal fragments with respect to three frequencies are self-contained, with each frequency five sub-pluses of different amplitudes are shown. For feature selection, the maximum and minimum values in the 1st filtered sub-pluse are extracted. Therefore, 5×2×3×5 = 30×5 = 150 points are extracted as features for each sample. Totally, 114 samples of 13 kinds of liquid including beer, red wine, white spirit, black tea, Mao Feng tea, Pu’er tea, oolong tea, coffee, milk, cola, vinegar, medicine and salt are acquired in the developed dataset for E-Tongue research in algorithms.

(2)数据集开发。数据测量过程包括样品制备、信号感知、信号采集和电极清洗。所有的测量都是在室温(25±1℃)下进行的,电化学电池暴露在环境空气中,没有任何处理。每个液体样品由带有5个电极传感器的E-Tongue系统测量。对于每个传感器,观测到2050个点,每次观测得到5 × 2050个数据矩阵。为了进一步去噪,考虑了基于滑动窗口的平滑滤波器。信号片段相对于三个频率是独立的,每个频率显示五个不同幅度的子加号。对于特征选择,提取第一个滤波子脉冲中的最大值和最小值。因此,每个样本提取5×2×3×5 = 30×5 = 150个点作为特征。在开发的数据集中,共获取了啤酒、红酒、白酒、红茶、毛风茶、普洱茶、乌龙茶、咖啡、牛奶、可乐、醋、药、盐等13种液体114个样本,用于E-Tongue算法研究

(3) Algorithm development. The multivariate data analysis module is composed of data processing, analysis and recognition. Generally, due to the random perturbation of electronic devices, the acquired sensing data usually contains noise and distortion, that causes clutter background and inseparability. In data analysis and recognition, a local discriminant preservation projection (LDPP) model is used for feature representation and support vector machine is used as classifier. The LDPP pursues neighborhood structure preservation and local discrimination. The former inherits the manifold assumption that neighbor data points are with similar labels and tends to find a low-dimensional affinity structure embedded in the raw data space. The latter aims to enhance the local discriminative property which is not sensitive to implicit outliers. The model is motivated by two intuitions: geometric intuition and attribution intuition. Geometric intuition is that if the interior data can be distinguished well, exterior data should be naturally distinguished. Attribution intuition is that exterior data has a higher probability to be abnormal or outlier data. Therefore, we modify the Fisher criterion by imposing locality constraint which is important for small sized E-Tongue data. Additionally, manifold regularization is also used for local similarity preservation.

(3)算法开发。多元数据分析模块由数据处理、分析和识别三个部分组成。通常,由于电子设备的随机扰动,采集到的传感数据通常含有噪声和畸变,从而导致背景杂乱和不可分性。在数据分析和识别中,采用局部判别保存投影(LDPP)模型进行特征表示,支持向量机作为分类器。LDPP追求社区结构保护和地方歧视。前者继承了流形假设,即相邻数据点具有相似的标签,并倾向于找到嵌入原始数据空间的低维亲和结构。后者旨在增强对隐式离群值不敏感的局部判别性。该模型由两种直觉驱动:几何直觉和归因直觉。几何直觉是,如果内部数据可以很好地区分,外部数据应该自然区分。归因直觉是指外部数据成为异常或离群数据的概率更高。因此,我们通过施加局部性约束来修改Fisher准则,局部性约束对于小尺寸电子舌数据是很重要的。此外,流形正则化还用于局部相似保持。

Figure 4. Illustration of the LDPP model. The circles denote the local part of each class, which show the between-class overlap and within-class outliers. After LDPP, the local discrimination with implicit outliers excluded and the locality structure preservation are expected to be achieved.

图4。LDPP模型说明。圆圈表示每个类的局部部分,表示类间重叠和类内异常值。在LDPP之后,有望实现排除隐异常值的局部判别和局部结构保存。

(4) Evaluation test. After training of the feature representation and classifier by using 5-folds cross-validation strategy, the testing recognition accuracy using a number of algorithms are tested. 4 folds are used as training set and the remaining 1 fold is used as test set. The average recognition performance of 13 analytes achieves 98%. A number of research has fully confirmed that bionic E-Tongue can be used in industrial quality control, food quality analysis, etc.

(4)评价试验。采用5倍交叉验证策略对特征表示和分类器进行训练后,对多种算法的测试识别精度进行了测试。其中4折作为训练集,剩下的1折作为测试集。13种分析物的平均识别性能达到98%。多项研究充分证实,仿生电子舌可用于工业质量控制、食品质量分析等方面

I do believe that E-Tongue and E-Nose will be an optimistic start for revealing the biological taste and olfactory mechanism in the course of development of world artificial intelligence.

我相信,在世界人工智能的发展过程中,电子舌和电子鼻将是揭示生物味觉和嗅觉机制的一个乐观的开端

Figure 5. The pipeline of training and testing phase.

图5    培训和测试阶段的流水线

Table 1. The recognition accuracies of 13 analytes by using different algorithms.

表1   分析了不同算法对13种分析物的识别精度

Those interested in a longer length report can download the working paper at:

https://ieeexplore.ieee.org/abstract/document/8262615

References:

Tahara and K. Toko. Electronic Tongues—A Review. IEEE Sensors Journal, vol. 13, no. 8, 2013.

Winquist, P. Wide, and I. Lundström. An electronic tongue based on voltammetry. Analytica Chimica Acta, vol. 357, no. 1-2, pp. 21-31, 1997.

S.Y. Tian, S.P. Deng, and Z.X. Chen. Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue. Sensors and Actuators B: Chemical, vol. 123, no. 2, pp. 1049-1056, 2007.

Persaud and G. Dodd. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, vol. 299, pp. 352-355, 1982.

J.W. Gardner and P.N. Bartlett. A Brief History of Electronic Noses. Sensors and Actuators B: Chemical, vol. 18-19, no. 1, pp. 210-211, 1994.

Cetó, A. González-Calabuig, N. Crespo, S. Pérez, J. Capdevila, A. Puig-Pujol, and M.D. Valle. Electronic tongues to assess wine sensory descriptors. Talanta, vol. 162, pp. 218-224, 2016.

M.G. Varnamkhasti, S.S. Mohtasebi, M. Siadat, J. Lozano, H. Ahmadi, S.H. Razavi, A. Dicko. Aging fingerprint characterization of beer using electronic nose. Sensors and Actuators B: Chemical, vol. 159, no. 1, pp. 51-59, 2011.

Zhang, Y. Liu and P. Deng. Odor Recognition in Multiple E-nose Systems with Cross-domain Discriminative Subspace Learning. IEEE Trans. Instrumentation and Measurement, vol. 66, no. 7, pp. 1679-1692, 2017.

Zhang and D. Zhang. Efficient Solutions for Discreteness, Drift, and Disturbance (3D) in Electronic Olfaction. IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 48, no. 2, pp. 242-254, 2017.

Zhang, X. Wang, G.B. Huang, T. Liu, and X. Tan. Taste Recognition in E-Tongue using Local Discriminant Preservation Projection. IEEE Trans. Cybernetics, in press, 2018.

相关内容 查看全部